ESERCIZI SUGLI INTEGRALI DOPPI

ESEMPIO 1 Calcolare
\[\int \int_{D} \frac{x}{y^2} \, dx \, dy, \]
dove
\[D = \left\{ (x, y) \in \mathbb{R}^2 : 1 \leq x \leq 2, \frac{x^2}{2} - y \leq 0, y - x^2 \leq 0 \right\}. \]

Calcoliamo questo integrale vedendo \(D \) come dominio y-semplice. Abbiamo
\[
\int \int_{D} \frac{x}{y^2} \, dx \, dy = \int_{1}^{2} \left(\int_{x^2/2}^{x^2} \frac{x}{y^2} \, dy \right) \, dx \\
= \int_{1}^{2} \left[-\frac{x}{y} \right]_{x^2/2}^{x^2} \, dx \\
= \int_{1}^{2} \left(-\frac{1}{x} + \frac{2}{x} \right) \, dx \\
= \int_{1}^{2} \frac{1}{x} \, dx = \ln 2.
\]

ESEMPIO 2 Calcolare
\[\int \int_{D} \frac{xy}{\sqrt{x^2 + y^2}} \, dx \, dy, \]
dove
\[D = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 - 9 \leq 0, x^2 + y^2 - 1 \geq 0, y \geq 0, y \geq \frac{\sqrt{3}}{3} x \right\}. \]

Calcoliamo questo integrale in coordinate polari centrate in \((0, 0)\), cioè con il cambiamento di variabili
\[
\begin{aligned}
x &= \rho \cos \theta \\
y &= \rho \sin \theta
\end{aligned}
\]
dove in questo caso

\[\theta \in \left[\frac{\pi}{6}, \pi \right], \quad \rho \in [1, 3]. \]

Allora abbiamo che

\[
\int \int_D \frac{xy}{\sqrt{x^2 + y^2}} \, dxdy = \int_{\pi/6}^{\pi} \int_{1}^{3} \frac{\rho \cos \theta \cdot \rho \sin \theta}{\sqrt{\rho^2 \cos^2 \theta + \rho^2 \sin^2 \theta}} \cdot \rho \, d\rho \, d\theta \\
= \int_{\pi/6}^{\pi} \left(\int_{1}^{3} \rho^2 \cos \theta \sin \theta \, d\rho \right) \, d\theta \\
= \int_{\pi/6}^{\pi} \cos \theta \sin \theta \, \left(\int_{1}^{3} \rho^2 \, d\rho \right) \, d\theta \\
= \int_{\pi/6}^{\pi} \cos \theta \sin \theta \, \left[\frac{\rho^3}{3} \right]_1^3 \, d\theta \\
= \left(9 - \frac{1}{3} \right) \int_{\pi/6}^{\pi} \cos \theta \sin \theta \, d\theta \\
= \frac{26}{3} \cdot \left(-\frac{1}{2} \right) \int_{\pi/6}^{\pi} (-2 \cos \theta \sin \theta) \, d\theta \\
= -\frac{13}{3} \cdot \left(1 - \frac{3}{4} \right) = -\frac{13}{12}.
\]

ESEMPIO 3 Calcolare con un opportuno cambiamento di variabili

\[
\int \int_S xy \, dxdy,
\]

dove

\[S = \{(x, y) \in \mathbb{R}^2 : 0 < x \leq y \leq 2x, \ 1 \leq xy \leq 2\} . \]

Innanzitutto osserviamo che un opportuno cambiamento di coordinate suggerito dalle condizioni in \(S \) è

\[
\begin{cases}
xy = u \\
\frac{y}{x} = v
\end{cases}
\]

Stiamo cioè considerando la trasformazione \(\Psi : \mathbb{R}^2 \to \mathbb{R}^2 \) definita da

\[
\Psi(x, y) = (\Psi_1(x, y), \Psi_2(x, y)) = \left(xy, \frac{y}{x} \right),
\]
la cui trasformazione inversa è \(\Phi : \mathbb{R}^2 \to \mathbb{R}^2 \) definita da
\[
\Phi(u, v) = \left(\sqrt{\frac{u}{v}}, \sqrt{uv} \right).
\]
Mediante questo cambiamento di variabili l’insieme \(S \) diventa (nelle nuove coordinate)
\[
T = \Phi(S) = \{ (u, v) \in \mathbb{R}^2 : 1 \leq u \leq 2, 1 \leq v \leq 2 \}.
\]
Ci riconduciamo quindi a calcolare
\[
\int \int_T u |\det J_\Phi(u, v)| \, dudv,
\]
dove \(J_\Phi(\cdot, \cdot) \) è la matrice jacobiana associata alla trasformazione \(\Phi \).
Prima di procedere con il calcolo di questo integrale, è utile osservare che
\[
\det(J_\Phi) = \frac{1}{\det(J_\Psi)},
\]
essendo in questo caso la matrice Jacobiana \(J_\Psi \) associata alla trasformazione \(\Psi \) più semplice di \(J_\Phi \). Abbiamo infatti che
\[
J_\Psi(x, y) = \begin{pmatrix}
D_x \Psi_1 & D_y \Psi_1 \\
D_x \Psi_2 & D_y \Psi_2
\end{pmatrix}
= \begin{pmatrix}
y & x \\
-y/x^2 & 1/x
\end{pmatrix}.
\]
Quindi, poiché \(y/x = v \), abbiamo che
\[
\det(J_\Psi) = \frac{y}{x} + \frac{y}{x} = 2 \frac{y}{x} = 2v
\]
e per quanto osservato prima
\[
\det(J_\Phi(u, v)) = \frac{1}{2v}.
\]
Allora
\[
\int \int_S xy \, dxdy = \int \int_T u |\det J_\Phi(u, v)| \, dudv
= \int \int_T \frac{u}{2v} \, dudv
= \int_1^2 \left(\int_1^2 \frac{u}{2v} \, du \right) \, dv
= \int_1^2 \frac{1}{2v} \left[\frac{u^2}{2} \right]_1^2 \, dv
= \int_1^2 \frac{1}{2v} \left(2 - \frac{1}{2} \right) \, dv
= \frac{3}{4} \ln |v|^2 \bigg|_1^2 = \frac{3}{4} \ln 2.
\]
ESERCIZI PROPOSTI.

- Sia $D = [3, 4] \times [1, 2]$. Calcolare
 \[\int \int_{D} \frac{1}{(x+y)^2} \, dxdy. \]

- Calcolare
 \[\int \int_{T} x^2 e^y \, dxdy, \]
 dove T è il quadrato di vertici $(0, 1), (1, 0), (0, -1)$ e $(-1, 0)$.

- Calcolare
 \[\int \int_{T} x^2 (y+1) \, dxdy, \]
 dove T è il triangolo di vertici $(0, 0), (2, 0)$ e $(0, 2)$.

- Sia $D = \{(x, y) \in \mathbb{R}^2 : y \geq 0, y - x - 3 \leq 0, y + x - 3 \leq 0\}$. Calcolare
 \[\int \int_{D} xy^2 \, dxdy. \]

- Sia $D = \{(x, y) \in \mathbb{R}^2 : x - y^2 + 4 \geq 0, x + y^2 - 4 \leq 0\}$. Calcolare
 \[\int \int_{D} ye^x \, dxdy. \]

- Calcolare
 \[\int \int_{A} (x^2 + y^2 - y + 1) \, dxdy, \]
 dove A è la corona circolare delimitata dalle circonferenze di raggi 2 e 3, centrate nel punto $(1, 2)$.

- Sia $D = \{(x, y) \in \mathbb{R}^2 : 1 \leq x^2 + y^2 \leq 4, 0 \leq x \leq y\}$. Calcolare
 \[\int \int_{D} x^2 y \, dxdy. \]

- Sia $E = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1, y \geq x^2 - 1\}$. Calcolare
 \[\int \int_{E} x^2 \, dxdy. \]
• Sia $E = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1, \ 0 \leq y \leq \sqrt{3x}\}$. Calcolare
 $$\int \int_{E} \frac{\sqrt{x^2 + y^2}}{1 + x^2 + y^2} \, dx \, dy.$$

• Sia $E = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq \frac{1}{4}, \ \frac{1}{\sqrt{3}} \leq y \leq 0\}$. Calcolare
 $$\int \int_{E} \frac{1}{1 - (x^2 + y^2)} \, dx \, dy.$$

• Sia $E = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq \frac{1}{4}, \ \frac{1}{\sqrt{3}} \leq y \leq 0\}$. Calcolare
 $$\int \int_{E} \frac{1}{1 - (x^2 + y^2)} \, dx \, dy.$$

• Sia $E = \{(x, y) \in \mathbb{R}^2 : 0 < \frac{1}{\sqrt{3}} < x < y, \ x^2 + y^2 < 1\}$. Calcolare
 $$\int \int_{E} x^2 \cos(x^2 + y^2)^2 \, dx \, dy.$$

• Siano
 $$f(x, y) = (y - 3x) \log(2x + y)$$
e
 $D = \{(x, y) \in \mathbb{R}^2 : x \geq 0, \ y \geq 0, \ 3x + 1 \leq y \leq 3x + 3, \ 3 \leq y + 2x \leq 5\}$. Calcolare
 $$\int \int_{D} f(x, y) \, dx \, dy.$$

• Sia $A = \{(x, y) \in \mathbb{R}^2 : 1 < xy < 2, \ 1 < x < 2\}$. Calcolare
 $$\int \int_{A} x^2 ye^{xy} \, dx \, dy.$$

• Sia $E = \{(x, y) \in \mathbb{R}^2 : 1 < xy < 3, \ 1 < x < 3\}$. Con un opportuno cambiamento di variabili calcolare
 $$\int \int_{E} \frac{3}{1 + 9x^2y^2} \, dx \, dy.$$

• Sia $D = \{(x, y) \in \mathbb{R}^2 : 0 \leq y - x^2 \leq 2, \ 2 \leq y + x^2 \leq 3, \ x > 0\}$. Mediante un opportuno cambiamento di variabili calcolare
 $$\int \int_{D} x \, dx \, dy.$$
Sia $D = \{(x, y) \in \mathbb{R}^2 : x^2 - 3 \leq y \leq x^2 + 3, -1 < x < 1\}$. Calcolare

$$\int \int_D (2x - y)e^{y-x^2} \, dxdy.$$

Può essere opportuno il seguente cambiamento di variabili

$$u = y - x^2 \quad v = x.$$