Kowalevski top, Magri method of Syzygies and Discriminant Separability

Vladimir Dragović

Math. Phys. Group University of Lisbon/Mathematical Institute SANU, Belgrade

Bi-Hamiltonian Systems and All That
In honour of Professor Franco Magri’s 65th Birthday,
29 September 2011
1. Discriminantly separable polynomials - an overview
 • The Magri method of Syzygies
 • Discriminantly separable polynomials - a new view on the Kowalevski
 • Buchstaber-Novikov 2-valued groups

2. Classification of discriminantly separable polynomials

3. From discriminant separability to quad-graph integrability

4. Gauge transformations and deformations

5. Remarks

"... Kowalevski had the astonishing idea of replacing the mechanical variables (...) by the four integrals \((h_1, h_2, c_1, c_2)\) and by the roots \((\lambda_1, \lambda_2)\) of the second-order polynomial

\[
S(\lambda) = (x_1 - x_2)^2(\lambda - 1/6h_1)^2 - R(x_1, x_2)(\lambda - 1/6h_1) - 1/4R_1(x_1, x_2)
\]

..."
"... The discovery of the polynomial $S(\lambda)$ has always been a vexata quaestio. In her paper Kowalevski did not provide a convincing motivation for her choice, but only the evidence, a posteriori, that it actually works. Her choice therefore appears as the outcome of a magical intuition. The purpose of the present paper is to derive the polynomial $S(\lambda)$ directly from the equations of motion by the method of syzygies..."
F. Magri 2005
Discriminantly separable polynomials - a new view on the Kowalevski top

Pencil of conics

Two conics and tangential pencil

\[C_1 : a_0 w_1^2 + a_2 w_2^2 + a_4 w_3^2 + 2a_3 w_2 w_3 + 2a_5 w_1 w_3 + 2a_1 w_1 w_2 = 0 \]
\[C_2 : w_2^2 - 4w_1 w_3 = 0 \]

\[F(s, x_1, x_2) = L(x_1, x_2)s^2 + K(x_1, x_2)s + H(x_1, x_2). \]
Theorem [V. D. (2009/2010)]

(i) There exists a polynomial $P = P(x)$ such that the discriminant of the polynomial F in s as a polynomial in variables x_1 and x_2 separates the variables:

$$D_s(F)(x_1, x_2) = P(x_1)P(x_2). \tag{1}$$

(ii) There exists a polynomial $J = J(s)$ such that the discriminant of the polynomial F in x_2 as a polynomial in variables x_1 and s separates the variables:

$$D_{x_2}(F)(s, x_1) = J(s)P(x_1). \tag{2}$$

Due to the symmetry between x_1 and x_2 the last statement remains valid after exchanging the places of x_1 and x_2.
Gauge equivalence

Gauge transformations

\[x \mapsto \frac{a_1 x + b_1}{c_1 x + d_1} \]

\[y \mapsto \frac{a_2 y + b_2}{c_2 y + d_2} \]

\[z \mapsto \frac{a_3 z + b_3}{c_3 z + d_3} \]
Discriminantly separable polynomials - a new view on the Kowalevski top

Discrim. separable polynomials – definition [V. D. 2009/2010]

For a polynomial $F(x_1, \ldots, x_n)$ we say that it is **discriminantly separable** if there exist polynomials $f_i(x_i)$ such that for every $i = 1, \ldots, n$

$$D_{x_i} F(x_1, \ldots, \hat{x}_i, \ldots, x_n) = \prod_{j \neq i} f_j(x_j).$$

It is **symmetrically discriminantly separable** if

$$f_2 = f_3 = \cdots = f_n,$$

while it is **strongly discriminantly separable** if

$$f_1 = f_2 = f_3 = \cdots = f_n.$$

It is **weakly discriminantly separable** if there exist polynomials $f_i^j(x_i)$ such that for every $i = 1, \ldots, n$

$$D_{x_i} F(x_1, \ldots, \hat{x}_i, \ldots, x_n) = \prod_{j \neq i} f_i^j(x_j).$$
Discriminantly separable polynomials - an overview

Classification of discriminantly separable polynomials

Geometric interpretation of the Kowalevski fundamental equation

\[Q(w, x_1, x_2) := (x_1 - x_2)^2 w^2 - 2R(x_1, x_2)w - R_1(x_1, x_2) = 0 \]

\[R(x_1, x_2) = - x_1^2 x_2^2 + 6\ell_1 x_1 x_2 + 2c(x_1 + x_2) + c^2 - k^2 \]

\[R_1(x_1, x_2) = - 6\ell_1 x_1^2 x_2^2 - (c^2 - k^2)(x_1 + x_2)^2 - 4c\ell x_1 x_2(x_1 + x_2) + 6\ell_1(c^2 - k^2) - 4c^2\ell^2 \]

\[a_0 = -2 \quad a_1 = 0 \quad a_5 = 0 \]

\[a_2 = 3\ell_1 \quad a_3 = -2c\ell \quad a_4 = 2(c^2 - k^2) \]
Geometric interpretation of the Kowalevski fundamental equation

Theorem [V. D. (2009)]

The Kowalevski fundamental equation represents a point pencil of conics given by their tangential equations

\[\hat{C}_1 : -2w_1^2 + 3l_1 w_2^2 + 2(c^2 - k^2)w_3^2 - 4cw_2w_3 = 0; \]
\[C_2 : w_2^2 - 4w_1w_3 = 0. \]

The Kowalevski variables \(w, x_1, x_2 \) in this geometric settings are the pencil parameter, and the Darboux coordinates with respect to the conic \(C_2 \) respectively.
Multi-valued Buchstaber-Novikov groups

n-valued group on X

\[m : X \times X \to (X)^n, \quad m(x, y) = x \ast y = [z_1, \ldots, z_n] \]

$(X)^n$ — symmetric n-th power of X

Associativity

Equality of two n^2-sets:

\[
[x \ast (y \ast z)_1, \ldots, x \ast (y \ast z)_n] \quad \text{and} \quad [(x \ast y)_1 \ast z, \ldots, (x \ast y)_n \ast z]
\]

for every triplet $(x, y, z) \in X^3$.
Unity \(e \)
\[
e \ast x = x \ast e = [x, \ldots, x] \text{ for each } x \in X.
\]

Inverse \(\text{inv} : X \to X \)
\[
e \in \text{inv}(x) \ast x, \ e \in x \ast \text{inv}(x) \text{ for each } x \in X.
\]
Two-valued group on \mathbb{CP}^1

The equation of a pencil

$$F(s, x_1, x_2) = 0$$

Isomorphic elliptic curves

$$\Gamma_1 : y^2 = P(x) \quad \text{deg } P = 4 \quad \Gamma_2 : t^2 = J(s) \quad \text{deg } J = 3.$$
There is a group structure on the cubic Γ_2. Together with its subgroup \mathbb{Z}_2, it defines the standard two-valued group structure on $\mathbb{C}P^1$:

$$s_1*cs_2 = \left[-s_1 - s_2 + \left(\frac{t_1 - t_2}{2(s_1 - s_2)} \right)^2, -s_1 - s_2 + \left(\frac{t_1 + t_2}{2(s_1 - s_2)} \right)^2 \right],$$

where $t_i = J'(s_i), \ i = 1, 2$.

Theorem [V. D. (2009/2010)]

The general pencil equation after fractional-linear transformations

$$F(s, \hat{\psi}^{-1}(x_1), \hat{\psi}^{-1}(x_2)) = 0$$

defines the two valued group structure (Γ_2, \mathbb{Z}_2) and the Kowalevski change of variables.
Two-valued group \mathbb{CP}^1

Theorem [V. D. (2009/2010)]

Associativity conditions for the group structure of the two-valued group (Γ_2, \mathbb{Z}_2) and for its action on Γ_1 are equivalent to the great Poncelet theorem for a triangle.
Classification of the strongly discriminantly separable polynomials

Natural question: to classify discriminantly separable polynomials of degree two in each of three variables, up to gauge transformations.

Theorem (V. D. - K. Kukić, 2011)

All strongly discriminantly separable polynomials in three variables of degree two in each variable, with polynomial \(P \) with four simple roots, are gauge equivalent to the two valued group defined by the equation:

\[
(x + y + z + \frac{g_2}{4}xyz)^2 - (4 + g_3 xyz)(xy + yz + zx) = 0.
\]
(B) (1,1,2): two simple zeros and one double zero, for canonical form \(P(x) = x^2 - \epsilon^2 \),

\[
F_B = x_1 x_2 x_3 + \frac{\epsilon}{2} (x_1^2 + x_2^2 + x_3^2 - \epsilon^2),
\]

(C) (2, 2): two double zeros, for canonical form \(P(x) = x^2 \),

\[
F_{C1} = \alpha_1 x_1^2 x_3^2 + \alpha_2 x_1 x_2 x_3 + \alpha_3 x_2^2, \quad \alpha_2^2 - 4 \alpha_1 \alpha_3 = 1,
\]

\[
F_{C2} = \beta_1 x_1^2 x_2^2 x_3^2 + \beta_2 x_1 x_2 x_3 + \beta_3, \quad \beta_2^2 - 4 \beta_1 \beta_3 = 1,
\]

(D) (1,3): one simple and one triple zero, for canonical form \(P(x) = x \),

\[
F_D = -\frac{1}{2} (x_1 x_2 + x_2 x_3 + x_1 x_3) + \frac{1}{4} (x_1^2 + x_2^2 + x_3^2),
\]
Classification-continuation

(E) (4): one quadruple zero, for canonical form $P(x) = 1$,

\[
F_{E1} = \gamma_1(x_1 + x_2 + x_3)^2 + \gamma_2(x_1 + x_2 + x_3) + \gamma_3, \quad \gamma_2^2 - 4\gamma_1\gamma_3 = 1,
\]

\[
F_{E2} = \gamma_1(x_2 + x_3 - x_1)^2 + \gamma_2(x_2 + x_3 - x_1) + \gamma_3, \quad \gamma_2^2 - 4\gamma_1\gamma_3 = 1,
\]

\[
F_{E3} = \gamma_1(x_1 + x_3 - x_2)^2 + \gamma_2(x_1 + x_3 - x_2) + \gamma_3, \quad \gamma_2^2 - 4\gamma_1\gamma_3 = 1,
\]

\[
F_{E4} = \gamma_1(x_1 + x_2 - x_3)^2 + \gamma_2(x_1 + x_2 - x_3) + \gamma_3, \quad \gamma_2^2 - 4\gamma_1\gamma_3 = 1.
\]
Integrable quad-graphs
Toward Adler-Bobenko-Suris quad graphs: \(h \)

From \(F \) to \(\hat{h} \)

\[
\hat{h}(x_1, x_2, \alpha) = \frac{F(x_1, x_2, \alpha)}{\sqrt{P(\alpha)}}
\]

The system for \(h_B \)

\[
\begin{align*}
 h_{22} &= 0, \ h_{21} = h_{12} = 0, \ h_{01} = h_{10} = 0 \\
 h_{02} &= h_{20}, \ h_{11} = \pm \sqrt{1 + 4b_{20}^2}, \ h_{00} = \frac{e^2}{4b_{20}}. \\
 h_{20} \text{ arbitrary function of } \alpha. \ \text{ABS2009: } h_{20} = \alpha/(1 - \alpha^2).
\end{align*}
\]
\(\hat{h}_B \) and \(\hat{Q}_B \)

\(\hat{h}_B \)

\[\hat{h}_{20} = \frac{e}{2} \sqrt{\alpha^2 - e^2} \]

\[\hat{h}_B(x_1, x_2, \alpha) = \left(\frac{e}{2} (x_1^2 + x_2^2 + \alpha^2) + \alpha x_1 x_2 - \frac{e^3}{2} \right) / \sqrt{\alpha^2 - e^2} \]

\[= F_B(x_1, x_2, \alpha) / \sqrt{\alpha^2 - e^2}. \]

\(\hat{Q}_B \)

\[\hat{Q}_B = \sqrt{\beta_1^2 - e^2 (x_1 x_4 + x_2 x_3)} + \sqrt{\alpha_1^2 - e^2 (x_1 x_2 + x_3 x_4)} + \]

\[\frac{\alpha_1 \sqrt{\beta_1^2 - e^2} + \beta_1 \sqrt{\alpha_1^2 - e^2}}{e} (x_1 x_3 + x_2 x_4) \]

\[- \sqrt{\beta_1^2 - e^2} \sqrt{\alpha_1^2 - e^2} \frac{(\alpha_1 \sqrt{\beta_1^2 - e^2} + \beta_1 \sqrt{\alpha_1^2 - e^2})}{e}. \]
Types of pencils of conics: A, B
Types of pencils of conics: C, D, E
Deformation

Deformation of the Kowalevski top

\[F(x_1, x_2, s) := s^2A + sB + C = 0. \]

A gauge transformation

\[s \mapsto t + \alpha. \]

\[F_\alpha(x_1, x_2, t) = t^2A + t(B + 2\alpha A) + (C + \alpha B + \alpha^2 A) = 0. \]

\[C = F^2 - EG, \quad A = (x_1 - x_2)^2 \]
\[A_\alpha = A \]
\[B_\alpha = B + 2\alpha A \] \hspace{1cm} (3)
\[C_\alpha = C + \alpha B + \alpha^2 A \]
\[F_\alpha = F + \alpha F_1 \]
\[E_\alpha = E + \alpha E_1 \] \hspace{1cm} (4)
\[G_\alpha = G + \alpha G_1 \]
\[B = 2FF_1 - E_1 G - EG_1 \]
\[A = F_1^2 - E_1 G_1 \] \hspace{1cm} (5)
From

\[B = -2(Ex_1x_2 + F(x_1 + x_2) + G) \]

we get

\[F_1 = -(x_1 + x_2) \]
\[G_1 = 2x_1x_2 \]
\[E_1 = 2 \]

One easily checks

\[F_1^2 - E_1G_1 = A. \]
$E_\alpha = 6l_1 - (x_1 + x_2)^2 + 2\alpha$

$F_\alpha = 2cl + x_1x_2(x_1 + x_2) - \alpha(x_1 + x_2)$

$G_\alpha = c^2 - k^2 - x_1^2x_2^2 + 2\alpha x_1x_2$
Elastic deformation

Jurdjevic considered a deformation of the Kowalevski case associated to a Kirchhoff elastic problem. The systems are defined by the Hamiltonians

$$H = M_1^2 + M_2^2 + 2M_3^2 + \gamma_1$$

where deformed Poisson structures \(\{\cdot, \cdot\}_\tau\) are defined by

$$\{M_i, M_j\}_\tau = \epsilon_{ijk} M_k, \quad \{M_i, \gamma_j\}_\tau = \epsilon_{ijk} \gamma_k, \quad \{\gamma_i, \gamma_j\}_\tau = \tau \epsilon_{ijk} M_k,$$

the deformation parameter takes values \(\tau = 0, 1, -1\). The classical Kowalevski case corresponds to the case \(\tau = 0\).
Denote

\[e_1 = x_1^2 - (\gamma_1 + i\gamma_2) + \tau \]
\[e_2 = x_2^2 - (\gamma_1 - i\gamma_2) + \tau, \]

where

\[x_{1,2} = \frac{M_1 \pm iM_2}{2}. \]
Integrals of motion

The integrals of motion

\[l_1 = e_1 e_2 \]
\[l_2 = H \]
\[l_3 = \gamma_1 M_1 + \gamma_2 M_2 + \gamma_3 M_3 \]
\[l_4 = \gamma_1^2 + \gamma_2^2 + \gamma_3^2 + \tau (M_1^2 + M_2^2 + M_3^2) \]

may be rewritten in the form:

\[k^2 = l_1 = e_1 \cdot e_2 \]
\[M_3^2 = e_1 + e_2 + \hat{E}(x_1, x_2) \]
\[M_3 \gamma_3 = -x_2 e_1 - x_1 e_2 + \hat{F}(x_1, x_2) \]
\[\gamma_3^2 = x_2^2 e_1 + x_1^2 e_2 + \hat{G}(x_1, x_2) , \]
where

\[
\begin{align*}
\hat{G}(x_1, x_2) &= -x_1^2x_2^2 - 2\tau x_1x_2 - 2\tau(l_1 - \tau) + \tau^2 - l_2 \\
\hat{F}(x_1, x_2) &= (x_1x_2 + \tau)(x_1 + x_2) + l_3 \\
\hat{E}(x_1, x_2) &= -(x_1 + x_2)^2 + 2(l_1 - \tau).
\end{align*}
\]
A gauge transformation

\[s \mapsto t + \alpha \]

transforms the Kowalevski top to Jurdjevic elasticae according to the formulae

\[\tau = -\alpha \]
\[l_1 = 3l_1 \]
\[l_3 = 2cl \]
\[l_2 = c^2 - k^2 + 2\alpha (3l_1 + \alpha) + \alpha^2 \]
<table>
<thead>
<tr>
<th>Classification</th>
<th>Time Period</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrov classification</td>
<td>1950’-60’</td>
<td>General relativity, classical differential geometry, Weyl curvature tensor.</td>
</tr>
<tr>
<td>Krichever - V. D. classification</td>
<td>1980’-90’</td>
<td>4×4 solutions of the Yang-Baxter equation, lattice statistical mechanics.</td>
</tr>
<tr>
<td>Adler-Bobenko-Suris classification</td>
<td>2009</td>
<td>ABS quad graphs.</td>
</tr>
<tr>
<td>V. D.- Kukic classification</td>
<td>2011</td>
<td>Strongly discriminantly separable polynomials of second degree in each of three variables.</td>
</tr>
</tbody>
</table>
Experimental Math

Other \(n \)-valued groups

\[
p_3 = s_1^3 - 3^3 s_3
\]
\[
Dp_3 = y^2 x^2 (x - y)^2.
\]
\[
p_4 = s_1^4 - 2^3 s_1^2 s_2 + 2^4 s_2^2 - 2^7 s_1 s_3
\]
\[
Dp_4 = y^3 x^3 (x - y)^2 (y + 4x)^2 (4y + x)^2.
\]
\[
p_5 = s_1^5 - 5^4 s_1^2 s_3 + 5^5 s_2 s_3
\]
\[
Dp_5 = y^4 x^4 (x - y)^4 (-y^2 - 11xy + x^2)^2 (-y^2 + 11xy + x^2)^2.
\]
Our book: V. D, M. Radnovic, Poncelet Porisms and Beyond, Springer 2011, Russian version RCD 2010
V. Dragović, M. Radnović
Poncelet porisms and beyond

V. Dragović,

V. Dragović,
Poncelet-Darboux curves, their complete decomposition and Marden theorem arXiv:0812.48290 (2008) IMRN

V. Dragović, M. Radnović,
Hyperelliptic Jacobians as Billiard Algebra of Pencils of Quadrics: Beyond Poncelet Porisms, Advances in Mathematics **219** (2008)

V. Dragović, K. Kukić,
Integrable Kowalevski type systems, discriminantly separable polynomials and quad graphs arXiv: 1106.5770

V. M. Buchstaber, V. Dragović,
Two-valued groups, Kummer varieties and integrable billiards arXiv: 1011.2716

V. Dragović, M. Radnović,
Billiard algebra, integrable line congruences and DR-nets in progress
Dear Professor Magri,
Auguri! Many happy returns!