Recent Progress
in Topological Fluid Dynamics

Renzo L. Ricca
Department of Mathematics & Applications, U. Milano-Bicocca
renzo.ricca@unimib.it

Course contents

1. Topological interpretation of helicity
2. Vortex knots dynamics and momenta of a tangle
3. Magnetic knots and groundstate energy spectrum
4. Topological transition of soap films
5. Helicity change under reconnection: the GPE case
6. Topological decay measured by knot polynomials
Lecture 1

- **Topological interpretation of helicity:**
 - Coherent structures and topological fluid mechanics
 - Diffeomorphisms and topological equivalence
 - Kinetic and magnetic helicity of flux tubes
 - Gauss linking number
 - Călugăreanu invariant and geometric decomposition

- **Selected references**

 Barenghi, CF, Ricca, RL & Samuels, DC 2001 How tangled is a tangle? *Physica D* 157, 197.
Coherent structures

- Vortex filaments in fluid mechanics
 (Kleckner & Irvine 2013)

- Vortex tangles in quantum systems
 (Villois et al. 2016)

- Magnetic fields in astrophysical flows and plasma physics
 (TRACE mission 2002)
150 years of topological dynamics

Linking number formula
(Gauss 1833)

Knot tabulation
(Tait 1877)

Applications to magnetic fields
(Maxwell 1867)

Applications to vortices
(Kelvin 1867)

“topological dynamics”

- Knotted solutions to Euler’s equations
- Energy relaxation methods
- Dynamical systems and \(\mu \)-preserving flows
- Change of topology

Applications to magnetic fields

- 3-D fluid topology
- vortex solutions
- fluid invariants
- topological stability

- magnetic knots
- “charged” knots
- groundstate energy

- \(\exists \) Theorems for vector fields
- closed and chaotic orbits
- Hamiltonian structures

- reconnection mechanisms
- singularity formation
Diffeomorphisms of frozen fields

- ideal, incompressible perfectly conducting fluid in \mathbb{R}^3: \[u = u(X,t) \begin{cases} \nabla \cdot u = 0 \quad \text{in} \quad \mathbb{R}^3 \\ u = 0 \quad \text{as} \quad X \to \infty \end{cases} \]

- frozen field evolution:

\[B(X,t) \in \left\{ \frac{\partial B}{\partial t} = \nabla \times (u \times B) \land \nabla \cdot B = 0; \quad L_2 - \text{norm} \right\} \]

- topological equivalence class:

\[B_i(X, t) = B_j(X_0, 0) \frac{\partial X_i}{\partial X_{0j}} : \quad B(X_0, 0) \sim B(X, t) \]
The concept of topological equivalence and invariants

- Re-arrangement of internal structure

- Linked pretzel

- Knotted pretzel
Change of topology

reconnection via local surgery
(dissipative effects)
Physical knots and links as tubular embeddings

Let \(\mathcal{T}_i = S_i \otimes C_i \) and \(V_i = V(\mathcal{T}_i) \):

\[\mathcal{T}_i \to \mathcal{K}_i \quad \text{in} \quad \mathbb{R}^3 \]

- **physical embedding:**

 \[\mathcal{K}_i := \text{supp}(B) \]

 by a standard foliation \(\mathcal{F}_{\{p_i, q_i\}} \) of the \(B \)-lines, such that \(B \cdot \hat{\nu} = 0 \) on \(\partial \mathcal{T}_i \) (material surface).

- **Definition:** A physical knot/link is a smooth immersion into \(\mathbb{R}^3 \) of finitely many disjoint standard solid tori \(\mathcal{T}_i \), such that

 \[\text{supp}(B) := \bigcup_i \mathcal{K}_i \to \mathcal{L}_n \quad (i = 1, \ldots, n) \]

- **volume and flux-preserving diffeomorphism:**

 \[V = V(B), \quad \Phi_i = \int_{A(S_i)} B \cdot \hat{\lambda} \, d^2x \; ; \quad \text{signature} \quad \{V, \Phi_i\} \quad \text{constant.} \]
Analogies between Euler equations and magnetohydrodynamics

\[\omega = \nabla \times \mathbf{u} \]
\[\mathbf{u} \]
\[\frac{\partial \omega}{\partial t} = \nabla \times (\mathbf{u} \times \omega) \]
\[H = \int_{V_\omega} \mathbf{u} \cdot \omega \; d^3x \]

\[\mathbf{B} = \nabla \times \mathbf{A} \]
\[\mathbf{u} \]
\[\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) \]
\[H = \int_{V_B} \mathbf{A} \cdot \mathbf{B} \; d^3x \]

\[\omega = \nabla \times \mathbf{u} \]
\[\mathbf{u} \times \omega = \nabla h \]
\[H = \int_{V_\omega} \mathbf{u} \cdot \omega \; d^3x \]

\[\mathbf{J} = \nabla \times \mathbf{B} \]
\[\mathbf{J} \times \mathbf{B} = \nabla p \]
\[H = \int_{V_J} \mathbf{J} \cdot \mathbf{B} \; d^3x \]

\[h = p + \frac{1}{2} \mathbf{u}^2 \]

\[\mathbf{B}_0 \rightarrow \mathbf{B}_E \]
\[\mathbf{u}_0 \rightarrow \mathbf{u}_E \]
Helicity and linking numbers

- **Helicity** $H(t)$:
 \[H(t) = \int_{V(B)} A \cdot B \, d^3X \]
 where \(B = \nabla \times A \), with \(\nabla \cdot A = 0 \) in \(\mathbb{R}^3 \).

- **Theorem** (Woltjer 1958; Moreau 1961). Under ideal conditions helicity is a conserved quantity (frozen in the flow), that is
 \[\frac{dH(t)}{dt} = 0 \quad \rightarrow \quad H = \text{constant}. \]

- **Theorem** (Moffatt 1969; Moffatt & Ricca 1992). Let \(\mathcal{L}_n \) be an essential physical link in an ideal fluid. Then, we have
 \[
 H = \int_{V(B)} A \cdot B \, d^3X = \sum_{i \neq j} Lk_{ij} \Phi_i \Phi_j + \sum_i Lk_i \Phi_i^2 \\
 = \sum_{i \neq j} Lk_{ij} \Phi_i \Phi_j + \sum_i (Wr + Tw) \Phi_i^2 .
 \]
Helicity in terms of Gauss linking number

- **Field** \mathbf{B} *entirely localized in* N unlinked, unknotted flux tubes
- **No contribution to helicity from individual flux tubes**

Following **Moffatt 1969** ($Lk_i = 0$) we have:

$$ H = \int_{V(B)} A \cdot B \, d^3X = \sum_{i \neq j} Lk_{ij} \Phi_i \Phi_j. $$

Proof. By Stokes’ theorem we have:

$$ K_1 = \oint_{C_1} A \cdot dl = \int_{S_1} B \cdot dS $$

$$ K_1 = \begin{cases} 0 & \text{if } C_1 \text{ and } C_2 \text{ are not linked;} \\ \pm \Phi_2 & \text{if } C_1 \text{ and } C_2 \text{ are singly linked.} \end{cases} $$

For N tubes multiply linked with each other, we have

$$ K_i = \oint_{C_j} A \cdot dl = \sum_j \alpha_{ij} \Phi_j $$
Written in integral form, we have
\[\Phi_i K_i = \oint_{C_i} \mathbf{A} \cdot \Phi_i \, dl = \oint_{V_i} \mathbf{A} \cdot \mathbf{B} \, dV \]
and summing over all tubes, we have an invariant integral over the whole \(\mathbf{B} \)-field:
\[H = \sum_i \Phi_i K_i = \sum_{i \neq j} \alpha_{ij} \Phi_i \Phi_j = \int_{V(\mathbf{B})} \mathbf{A} \cdot \mathbf{B} \, dV \]
The \(\mathbf{A} \) field is given by the Biot-Savart law due to \(\mathbf{B} \)-field, i.e.
\[\mathbf{A}(\mathbf{x}) = \frac{1}{4\pi} \int_{V(\mathbf{B})} \frac{\mathbf{R} \times \mathbf{B}(\mathbf{x}')}{R^3} \, dV' \]
\[\mathbf{R} = \mathbf{x}_i - \mathbf{x}_j \quad (R = |\mathbf{R}|) \]
\[\mathbf{x}_i \in C_i \quad \mathbf{x}_j \in C_j \]
hence
\[H = \frac{1}{4\pi} \iint \frac{\mathbf{R} \cdot [\mathbf{B}(\mathbf{x}) \times \mathbf{B}(\mathbf{x}')]}{R^3} \, dV \, dV' \]
that for discrete tubes becomes
\[H = \sum_{i \neq j} \alpha_{ij} \Phi_i \Phi_j = \sum_{i \neq j} \Phi_i \Phi_j \frac{1}{4\pi} \oint_{C_i} \oint_{C_j} \frac{\mathbf{R} \cdot d\mathbf{l}_i \times d\mathbf{l}_j}{R^3} = \sum_{i \neq j} \Phi_i \Phi_j Lk_{ij} \]
where
\[Lk_{ij} = Lk_{ji} \quad \text{is Gauss linking number.} \]
First topological invariants

- **Number of components:** N
- **Minimum number of crossings:** $c_{\text{min}} = \min(\#)$
- **(Gauss) linking number between components:** $Lk = \frac{1}{2} \sum_r \varepsilon_r$

\[
\varepsilon_r = \pm 1
\]

$N = 4$, $c_{\text{min}} = 0$, $Lk = 0$

$N = 2$, $c_{\text{min}} = 2$, $Lk = +1$
Computations by hand: some examples

\[Lk(A, B) = \frac{+2}{2} = +1 \]

\[Lk(A, B) = \frac{-2}{2} = -1 \]

\[Lk(A, B) = \frac{+4}{2} = +2 \]

\[Lk(A, B) = \frac{0}{2} = 0 \]
Helicity in terms of Călugăreanu invariant

- Suppose now that B-field lines inside individual flux tubes contribute to helicity:

- internal winding
- tube axis knottedness

- Suppose there is no other contribution to helicity.

Following Moffatt & Ricca 1992 ($Lk_{ij} = 0$) we have:

$$H = \int_{V(B)} A \cdot B \, d^3X = \sum_i Lk_i \Phi_i^2$$

and introduce the concept of ribbon $R(C,C^*)$:

$C_1 \rightarrow C: \ x = x(s)$

$C_2 \rightarrow C^*: \ x^* = x(s) + \varepsilon N(s)$
Călugăreanu-White invariant

Let us re-consider the Gauss linking formula:

\[Lk_{12} = Lk(C_1, C_2) = \frac{1}{4\pi} \oint_{C_1} \oint_{C_2} \frac{(x_1 - x_2) \cdot dx_1 \times dx_2}{|x_1 - x_2|^3} \]

and take the limit: \(\lim_{\varepsilon \to 0} Lk_{12}(\varepsilon) = Lk(C, C^*) \)

- Călugăreanu-White invariant:

\[Lk(C, C^*) = Wr(C) + Tw(C, C^*) \quad \text{(as} \ \varepsilon \ \to 0 \ \text{)} \]

- Writhing number: \(Wr(C) = \frac{1}{4\pi} \oint_{C} \oint_{C} (x - x^*) \cdot dx \times dx^* \)

- Total twist number:

\[Tw(C, C^*) = \frac{1}{2\pi} \oint_{C} \theta(x, x^*) \, ds = \begin{cases} T(C) = \frac{1}{2\pi} \oint_{C} \tau(s) \, ds \\ + \\ N(C, C^*) = \frac{1}{2\pi} [\Theta(x, x^*)]_R \end{cases} \]
Properties of Lk, Wr, and Tw

- **Călugăreanu invariant**: $Lk = Lk(C, C^*)$
 - $Lk(C, C^*)$ is a topological invariant of the ribbon;
 - it is an integer;
 - under cross-switching $(\mp \rightarrow \pm)$: $\Delta Lk = \pm 2$

- **Writhing number** $Wr = Wr(C)$:
 - $Wr(C)$ is a geometric measure of the curve C;
 - it is a conformational invariant;
 - under cross-switching $(\mp \rightarrow \pm)$: $\Delta Wr = \pm 2$

- **Total twist number** $Tw = Tw(C, C^*)$:
 - $Tw(C, C^*)$ is a geometric measure of the ribbon $R(C, C^*)$;
 - it is a conformational invariant;
 - it is additive: $Tw(A) + Tw(B) = Tw(A + B)$
Topological crossing number versus average crossing number

- 2-component oriented link with topological crossing number \(c_{\text{min}} = 4 \)

\[C_1 \quad \begin{array}{c}
\text{minimal projection} \\
C_2
\end{array} \]

\[c = c_{\text{min}} = 4 \]

\[Lk = +2 \]

\[C_1 \quad \begin{array}{c}
\text{generic projection} \\
C_2
\end{array} \]

\[c = 10 \]

\[Lk = +2 \]
Signed crossings and complexity measure

- **Writhing number in terms of signed crossings:**

\[
Wr = Wr(C) = \left< n_- (\nu) - n_+ (\nu) \right> = \left< \sum_{r \in C} \varepsilon_r \right>
\]

(Fuller 1971)

- **Average crossing number:**

\[
\overline{C} = \overline{C}(C) = \left< \sum_{r \in C \cap C} |\varepsilon_r| \right>
\]

(Freedman & He 1991)

\[
\overline{C} = 3:
\]

\[
Wr = -3 \quad \text{Wr} = +3 \quad \text{Wr} = +1
\]
Tangle analysis by indented projections

Let \(\Pi_i = \Pi(\hat{T}_i) \) be the “indented” \(\hat{T}_i \)-projection of the oriented tangle component \(\chi_i \); assign the value \(\varepsilon_r = \pm 1 \) to each apparent crossing in \(\Pi_i \).

- **writhing:**
 \[
 W_{r_i} = \Wr(\chi_i) = \left< \sum_{r \in \chi_i} \varepsilon_r \right> , \quad W_r = \Wr(\mathcal{T}') = \left< \sum_{r \in \mathcal{T}'} \varepsilon_r \right> ;
 \]

- **linking:**
 \[
 L_{kj} = \Lk(\chi_i, \chi_j) = \frac{1}{2} \sum_{r \in \chi_i \cap \chi_j} \varepsilon_r , \quad L_{k_{tot}} = \sum_{r \in \mathcal{T}'} |L_{kj}| ;
 \]

- **average crossing number:**
 \[
 \overline{C}_{ij} = \overline{C}(\chi_i, \chi_j) = \left< \sum_{r \in \chi_i \cap \chi_j} \varepsilon_r \right> , \quad \overline{C} = \sum_{r \in \mathcal{T}'} \overline{C}_{ij} ;
 \]

- **estimated values:**
 \[
 \overline{W}_r = \left(\sum_{r \in \mathcal{T}'} \varepsilon_r \right) , \quad \overline{C} = \left(\sum_{r \in \mathcal{T}'} |\varepsilon_r| \right) .
 \]
Energy-complexity relation: a 16 years-old test case

- ABC-flow field super-imposed on an initial circular vortex ring
Energy-complexity relation (Barenghi et al. 2001)

\[E(t) \sim \sqrt{\bar{C}(t)} \]